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Abstract
Pre-trained language models have shown suc-001
cessful progress in many text understanding002
benchmarks. This work explores the capability003
of these models to predict actionable plans in004
real-world environments. Given a text instruc-005
tion, we show that language priors encoded006
in pre-trained models allow us to infer fine-007
grained subgoal sequences. In contrast to re-008
cent methods which make strong assumptions009
about subgoal supervision, our experiments010
show that language models can infer detailed011
subgoal sequences from few training sequences012
without any fine-tuning. We further propose013
a simple strategy to re-rank language model014
predictions based on interaction and feedback015
from the environment. Combined with pre-016
trained navigation and visual reasoning com-017
ponents, our approach demonstrates compet-018
itive performance on subgoal prediction and019
task completion in the ALFRED benchmark020
compared to prior methods that assume more021
subgoal supervision.022

1 Introduction023

Developing autonomous agents that can complete024

specific tasks given goal descriptions embodies025

human-level intelligence. Successful agents in this026

setting require multiple reasoning capabilities in-027

cluding natural language understanding, visual rea-028

soning, and acting over long temporal horizons.029

Training black-box models that map instructions030

and observations to suitable actions has proven to031

be difficult due to challenges in interpreting and032

reasoning with multimodal information, especially033

in the absence of strong supervision. Thus, general-034

ization in this setting demands effective strategies035

for planning, exploration, and incorporating feed-036

back from the environment.037

Generalization in human agents, on the other038

hand, stems from our ability to naturally brainstorm039

abstract subgoals, better calibrating executable ac-040

tions and their sequences. Planning at the level041

Query Instruction
Move a heated slice of apple to the white table with shelving below

1) slice apple, heat in microwave, put in side table.
2) slice apple, heat in microwave, put in shelf.
3) slice apple, heat in microwave, put in dining table.

…

1) slice apple, heat in microwave, put in dining table.
2) slice apple, heat in microwave, put in side table.
3) slice apple, heat in microwave, put in shelf.

…

(a) In-context learning with language model
Put a rinsed slice of apple on the table = slice apple, clean it, put in dining table.;
Put a plate with a watch on it on the coffee table = pick up watch, put in plate, put in …

 …

(b) Re-rank based 
on interaction with 
environment

Candidate 
hypotheses

Re-ranked 
hypotheses

…

turn left pickup knife slice apple

Task success/
failure feedback

Figure 1: Overview of subgoal prediction approach. (a) A pre-
trained language model prompted with a sequence of training
instances, i.e., (instruction, subgoal sequence) pairs, and a
query instruction predicts top-k hypotheses using beam search.
(b) These predictions are then re-ranked by incorporating
information about the environment.

of subgoals instead of low-level actions allows us 042

to better adapt to unfamiliar settings. We posit 043

that language supervision can help realize such 044

planning capabilities effectively in artificial agents. 045

First, text is a natural API for interacting with intel- 046

ligent agents that act in the real world to complete 047

tasks. Knowledge available in the form of text cor- 048

pora, descriptions and instructions can be exploited 049

to build better agents (Branavan et al., 2012; Zhong 050

et al., 2019). Second, strong language priors are 051

useful to reason about causal sequences of events 052

(Li et al., 2021). Language priors can further in- 053

form about object affordances (e.g. an apple is 054

sliceable, whereas a table is not) and other contex- 055

tual knowledge (e.g. a slicing task is more likely to 056

be performed in a kitchen than a bathroom) (Chen 057

et al., 2020). Recent advances have demonstrated 058

that large language models are able to capture such 059

priors, as evidenced by their strong capabilities in 060
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language understanding and beyond (Devlin et al.,061

2018; Radford et al., 2019; Brown et al., 2020;062

Bommasani et al., 2021). This leads to the natu-063

ral question of whether priors learned by language064

models can help reason about subgoals.065

We study the ability of language models to rea-066

son about plans composed of a sequence of inter-067

mediate goals for completing basic object manipu-068

lation tasks in a household environment specified069

using text instructions. In particular, we use the070

in-context learning ability (Brown et al., 2020) of071

large pre-trained language models to reason about072

subgoals. In contrast to prior methods that fine-073

tune language models to predict subgoals/actions074

(Jansen, 2020; Yao et al., 2020), we show that075

they can predict subgoal sequences effectively with-076

out any fine-tuning. We teach the model how in-077

structions translate into subgoal sequences by con-078

structing a prompt using few examples. Given the079

prompt and a query instruction the language model080

predicts likely subgoal sequences (see Figure 1 for081

an illustration).082

While language models are capable of generat-083

ing strong hypotheses, we observe that these predic-084

tions may not be directly usable by agents acting in085

real environments. First, they suffer from calibra-086

tion issues: Language models have a tendency to087

repeat content from the prompt (Zhao et al., 2021).088

We show that mutual-information inspired metrics089

help mitigate calibration issues and lead to better090

ranking of model generated hypotheses.091

Second, real-world agents have to update their092

beliefs and predictions based on interaction and093

feedback from the environment. Without such feed-094

back we cannot expect the predicted plan to be095

executable in the environment. We execute plans096

proposed by the language model in the environ-097

ment using a pre-trained low-level policy and col-098

lect feedback about task success/failure. We use099

this feedback as a learning signal to train a ranking100

model that re-ranks language model predictions. In101

contrast to prior methods that rely on strong sub-102

goal supervision and task level expert trajectories,103

we show that combining subgoal predictions with104

a pre-trained subgoal execution policy leads to a105

strong embodied agent baseline.106

We make the following contributions in this107

work. We show that108

• Large language models can predict subgoals from109

text instructions with very little supervision (e.g.110

10 training examples) using in-context learning.111

• Incorporating a small amount of feedback from 112

interaction with the environment such as agent 113

state and task success/failure outcome improves 114

language model predictions. 115

• Combining predicted subgoals with a pre-trained 116

low-level policy for navigation and visual reason- 117

ing leads to a simple modular agent policy that 118

performs well on an embodied learning setting. 119

2 Related work 120

Language models for planning and interaction 121

The use of language models for planning and action 122

prediction has been explored in prior work. Jansen 123

(2020) fine-tuned a language model to predict sub- 124

goal sequences for text instructions from the AL- 125

FRED benchmark. Micheli and Fleuret (2021) take 126

a similar approach, but show that imitation learn- 127

ing with few instances combined with reinforce- 128

ment learning produces models that work well on 129

the ALFWorld benchmark (Shridhar et al., 2020b). 130

Yao et al. (2020) demonstrate a similar approach 131

for interactive fiction games (Hausknecht et al., 132

2020). In contrast to these prior methods, our ap- 133

proach does not assume strong supervision and 134

we demonstrate generalization with limited train- 135

ing examples. Furthermore, in order to exploit the 136

generalization capabilities of large language mod- 137

els, we do not fine-tune these models and instead 138

use their in-context learning ability. Finally, our 139

approach allows us to build policies that inherit 140

the strong generalization capabilities of these large 141

pre-trained models such as compositional general- 142

ization. 143

Large language models and few-shot learning 144

Brown et al. (2020) showed that pre-trained large 145

language models have few-shot learning capabil- 146

ities. Given a few examples {(xi, yi = f(xi))} 147

that define a task f such as classification or trans- 148

lation and a query instance xq, prompting a lan- 149

guage model with a string such as "x1 = y1;x2 = 150

y2; ...;xn = yn;x
q =" leads to meaningful com- 151

pletions by the language model yq ≈ f(xq). This 152

few-shot learning capability of language models 153

has since then been studied and improved upon 154

with approaches like prefix engineering (Schick 155

and Schütze, 2020), prompt tuning (Li and Liang, 156

2021), model calibration (Zhao et al., 2021) and 157

other methods (Min et al., 2021a). We adopt a 158

similar approach for few-shot subgoal inference. 159

We assume that subgoal supervision is available 160

for a small number of training tasks and use the 161

language model to infer subgoals for unseen tasks. 162
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Instruction following There is rich literature on163

agents that follow language instructions (Mei et al.164

(2016); Fried et al. (2017); Suhr et al. (2019) inter165

alia1). Recent developments in simulated environ-166

ments and benchmarks with human annotated in-167

structions have driven progress in embodied agents168

that learn from text instructions (Shridhar et al.,169

2020a; Kolve et al., 2017). Successful agents in170

these settings require multiple reasoning capabili-171

ties including language understanding, visual rea-172

soning and learning to act over long time-horizons.173

Compared to the sequence to sequence model orig-174

inally proposed in Shridhar et al. (2020a), subse-175

quent approaches have made progress by exploiting176

subgoal supervision, pre-trained visual reasoning177

components and pre-trained transformer models178

(Singh et al., 2020; Suglia et al., 2021; Zhang and179

Chai, 2021; Corona et al., 2020; Blukis et al., 2021).180

Unlike these methods, we do not assume access to181

strong subgoal supervision or task level expert su-182

pervision. We combine language model predictions183

with pre-trained low-level navigation and interac-184

tion policies to obtain a competitive agent policy.185

Few-shot semantic parsing Subgoal inference186

from text instructions can be considered a seman-187

tic parsing problem where the subgoal sequences188

serves as a formal representation of text. Shin et al.189

(2021) show that few-shot semantic parsers can190

be derived from language models and demonstrate191

their applicability on text-to-SQL (Finegan-Dollak192

et al., 2018) and SCAN (Lake and Baroni, 2018)193

benchmarks. Furrer et al. (2020) and Herzig et al.194

(2021) further study the compositional generaliza-195

tion ability of such semantic parsers. In our work196

we make use of ideas introduced in these works197

such as dynamic prompt creation, constrained de-198

coding and intermediate representations.199

3 Approach200

We first consider subgoal inference as a semantic201

parsing problem where a text instruction needs to202

be translated to a sequence of subgoals and propose203

an approach to few-shot subgoal inference based204

on pre-trained language models in Section 3.1. We205

extend this setting to an agent acting in a simulated206

environment which can execute these subgoals, ob-207

serve feedback, and improve upon language model208

predictions for more accurate subgoal inference in209

Section 3.2.210

1See Luketina et al. (2019) for a survey

3.1 Few-shot subgoal inference 211

Subgoals We are interested in a particular sub- 212

class of instruction following problems which in- 213

volve performing a sequence of object interac- 214

tions in an embodied environment. Each object 215

interaction requires navigating to a particular ob- 216

ject and performing an action on it. A task is 217

considered successfully completed if the state of 218

objects in the end satisfy a set of task-specific 219

constraints (for instance, objects that need to be 220

sliced/warmed/cooled/cleaned have the appropriate 221

state change). It is thus natural to define a subgoal 222

as one or more sequence of object interactions. A 223

subgoal g is specified as g = (b, o) ∈ B×O where 224

b ∈ B = {Pickup, Clean, Heat, ..} is one of a pre- 225

defined set of abstract actions and o ∈ O ={Apple, 226

Microwave, DeskLamp, Ottoman, ..} is an object 227

category. 228

Subgoal inference problem Given a text instruc- 229

tion τ , subgoal inference seeks to predict a se- 230

quence of subgoals τ 7→ g = (g(1), ..., g(n)). To 231

perform in-context learning with a language model, 232

we consider a representation v(g) of g that looks 233

like natural text, where v is a pre-defined invertible 234

mapping. Such representations have been referred 235

to in the literature as verbalizers (Min et al., 2021a), 236

intermediate representations (Herzig et al., 2021) 237

and canonical representations (Shin et al., 2021), 238

where the purpose is to represent the output in a 239

format the language model understands. In a slight 240

abuse of notation, we will use g to refer to either a 241

subgoal sequence or it’s textual representation v(g) 242

depending on the context. 243

Generating subgoals We assume that a small 244

amount of training data {(τ1, g1), · · · , (τn, gn)} is 245

given. The language model is prompted with a 246

comma separated concatenation of the training ex- 247

amples, each in the format "τi = gi", followed by 248

a query τ , formatted as "τ =". We assume that the 249

probability of a hypothesis h (i.e., text representa- 250

ton of a subgoal sequence) can be modeled as in 251

Equation (1), where hi is the ith token of h and the 252

token probabilities are derived from the language 253

model. 254

p(h|τ) =
∏
i

pLM(hi|h<i, τ, {τj , gj}nj=1) (1) 255

We use beam search to identify the top-k hypothe- 256

ses according to p(h|τ). Generated hypotheses are 257

constrained to be valid representations of subgoal 258

sequences by considering only tokens which lead 259
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Task
Move a heated slice of apple to the white table with 
shelving below

Subgoals completed: slice apple, heat in microwave

LM predictions
1. slice apple, heat in microwave, put in shelf.
2. slice apple, heat in microwave, put in dining table.
3. pick up apple, put in shelf. 
…

Re-ranked predictions
1. slice apple, heat in microwave, put in dining table.
2. slice apple, heat in microwave, put in shelf.
…

Agent 
state

Update subgoals

(Put,diningtable)

Re-rank

Execute 
subgoal

Figure 2: Re-ranking language model predictions with interaction and feedback from the environment. Given the task, language
model predictions, completed subgoals and the agent state we come up with a ranked list of subgoal sequences. The agent then
executes the next subgoal from the highest ranked plan. The completed subgoal is added to the partial plan and the process
continues until stop subgoal is encountered. During training the agent receives a positive reward if the task is successfully
completed, which we use as supervision to train the ranking model.

to a valid partial prefix of a subgoal sequence at260

each step of beam search.261

Re-ranking predictions Recent studies have262

found that language models have popularity and263

recency biases: the tendency to repeat content men-264

tioned in the prompt, especially content appearing265

later in the prompt (Zhao et al., 2021). They consid-266

ered a simple approach to mitigate such biases in267

model predictions for classification tasks by com-268

paring the likelihood of an output label with and269

without the query. In contrast to this ‘direct model’270

which models the probability of a label given the in-271

put p(y|x), Min et al. (2021a) showed that a ‘chan-272

nel model’ which models p(x|y) leads to better,273

more stable models.274

Inspired by these observations, we propose to275

use p(τ |h) to score hypotheses in addition to276

p(h|τ). Mutual Information based ranking metrics277

are a natural candidate and they have been explored278

in the text generation literature (Li et al., 2015; Li279

and Jurafsky, 2016). We generate multiple hypothe-280

ses from the model using p(h|τ) and the generated281

hypotheses are re-scored using the weighted mutual282

information metric (1−λ)log p(h|τ)+λlog p(τ |h)283

where λ is a hyperparameter (Appendix A details284

the connection to Mutual Information). To compute285

p(τ |h), we again use the language model prompted286

with "g1 = τ1, ..., gn = τn, h =" as the query and287

compute the conditional probability of τ . We ex-288

pect this paradigm of generating a set of strong hy-289

potheses, followed by accurate re-ranking is more290

generally applicable to other few-shot language291

understanding problems.292

3.2 Agent policy and incorporating293

environment feedback294

We next consider building an agent that acts in a295

visual environment to complete tasks given text in-296

structions. While Section 3.1 treated the language 297

model as a knowledge extraction system, in the real 298

world plans need to be updated based on interac- 299

tion and feedback from the environment. We thus 300

propose a method to improve language model pre- 301

dictions based on environment interaction. Since 302

our goal is to learn the planning component of the 303

agent, we assume a pre-trained low-level policy 304

is provided and optimize over the space of plans. 305

Jointly learning both components is beyond the 306

scope of this work and left as future work. 307

We assume that a representation of the agent 308

state s is available. The state representation cap- 309

tures information about the environment (e.g. ob- 310

jects present and their locations) estimated based 311

on the agent’s visual observations. As the agent 312

explores the environment and collects new obser- 313

vations the state representation is updated. As- 314

suming that a low-level policy πL pre-trained to 315

execute a given subgoal g is provided, our goal 316

is to train a high-level policy πH which proposes 317

the subgoals to be executed by the low-level pol- 318

icy. More formally, the high-level policy models 319

πH(g(t)|τ, st, g(<t)) where τ is a text instruction, 320

st is the state representation and g(<t) is the se- 321

quence of subgoals completed so far at high-level 322

time-step t2. 323

While the language model can generate com- 324

pelling subgoal hypotheses, it doesn’t take into 325

account information about the environment. For 326

instance, knowledge about the type of room the 327

agent is in (kitchen, bathroom, etc.) and the ob- 328

jects present in it are useful to infer the kind of 329

tasks and subgoals that can be performed. We 330

propose to re-rank hypotheses generated by the 331

language model based on information from the en- 332

2Alternatively, this can be framed as a POMDP in a hierar-
chical reinforcement learning setting.
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vironment to construct πH . The plans generated333

by the language model are executed in the envi-334

ronment using πL. The success/failure outcomes335

of these plan executions are used to construct a336

labeled dataset of instructions τ , plans g and agent337

state s. A supervised ranking model f(g, τ, s; θ)338

is trained using this data to re-rank the language339

model predictions. We represent the ranking model340

as f(g, τ, s; θ) = θT concat(f state(s), f text(τ, g))341

where f state(s) is a state embedding, f text(τ, g) is342

a joint encoding of τ and g produced by a text343

encoder and θ is a parameter vector. Although344

a text embedding can be derived from the lan-345

guage model, we use a BERT encoder in favor346

of obtaining a smaller dimensional representation347

(f text = BERTCLS). The state and text embed-348

dings are held fixed and only θ is trained. See349

Appendix C for more details.350

During inference, an instruction τ is given, and351

we use the procedure in Section 3.1 to generate352

top-k hypotheses. At each step, hypotheses incon-353

sistent with the sequence of subgoals executed so354

far are pruned and the remaining hypotheses are355

re-ranked based on the current agent state using356

f . The agent attempts the next subgoal proposed357

by the top hypothesis. The process ends when the358

stop subgoal is predicted. See Figure 2 for an illus-359

tration and Appendix D for more details about the360

training and inference algorithms.361

4 Experiments362

4.1 Data363

We use data from the ALFRED benchmark pro-364

posed by Shridhar et al. (2020a) in our experiments.365

The ALFRED task requires an agent to execute366

instructions specified in text to accomplish basic367

tasks in an embodied environment. A given task is368

described using a high-level language directive as369

well as low-level step-by-step instructions (We only370

use the high-level description). The dataset con-371

sists of 7 task types, and has more than 20k natural372

language task descriptions collected from human373

annotators. In addition, expert demonstrations com-374

puted by a planner are also made available. Tasks375

require acting over many time-steps, with an av-376

erage of 50 actions, and the longest tasks require377

100+ steps.378

The ground truth subgoal sequences in the379

dataset consist of both navigation subgoals and ob-380

ject interaction subgoals. We discard the navigation381

subgoals and only retain the interaction subgoals382

for the following reasons. First, the interaction383

Task
GPT2-XL GPT-J

top-1 top-10 top-1 top-10

look at obj in light 1.06 67.02 11.70 63.83
pick and place simple 24.19 63.71 59.86 80.99
pick two obj and place 24.19 63.71 50.81 79.03
pick heat then place 47.66 83.18 54.21 85.05
pick cool then place 33.33 80.16 53.97 83.33
pick clean then place 25.89 56.25 40.18 70.54
pick place movable 13.91 27.83 16.52 46.09

Overall 28.17 63.66 42.56 73.29

Table 1: Top-k recall for subgoal sequences predicted by
GPT2-XL and GPT-J models categorized by task type.

subgoals are sufficient for an agent to successfully 384

complete the task. Second, predicting navigation 385

subgoals from the text instruction alone may not al- 386

ways be possible as they often depend on the scene 387

layout. 388

Subgoal representation A subgoal gs is spec- 389

ified as gs = (b, o) ∈ B × O where |B| = 7 390

and |O| = 80. We define a textual representa- 391

tion v(b) of each action type (e.g. v(Pickup) = 392

‘pick up’, v(Heat) = ‘heat in’). The object types 393

o are identified by a text string v(o) in the dataset 394

and we directly use them as the text representa- 395

tion with minimal pre-processing (e.g. v(apple) = 396

‘apple’, v(desklamp) = ‘desk lamp’). The sub- 397

goal is represented as v(gs) =‘v(b) v(o)’ (e.g. 398

v((Pickup, apple)) = ‘pick up apple’). A sub- 399

goal sequence g = (g(1), ..., g(n)) is represented 400

as v(g) =‘v(g(1)), ..., v(g(n)).’. Text representa- 401

tions of all subgoals are given in Appendix B. Note 402

that there are many plausible choices for the repre- 403

sentation v and a different set of choices can lead 404

to different results. 405

Metrics We use top-k recall to evaluate the abil- 406

ity of language models to generate plans from in- 407

structions by comparing against ground truth plans. 408

In addition, we also evaluate the performance of an 409

agent acting in the AI2-Thor (Kolve et al., 2017) 410

simulator to complete tasks using task success rate 411

(the percentage of tasks successfully completed). 412

4.2 Few-shot subgoal inference 413

We construct a training set using N = 10 randomly 414

chosen instances from the training set. The lan- 415

guage model is prompted with a concatenation of 416

these training examples and the query instance. We 417

perform constrained beam search decoding with a 418

beam size of 10 to generate subgoal sequences. At 419

each step of beam search, only tokens which lead 420

to a valid partial prefix of a subgoal sequence are 421

considered. All model generated hypotheses thus 422
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Ranking criteria GPT2-XL GPT-J

log p(h|τ) 28.17 42.56
log p(τ |h) 40.98 48.41

1
2

log p(h|τ) + 1
2

logp(τ |h) 46.10 55.49

Table 2: Top-1 recall after re-ranking model generated top-10
hypotheses using different criteria.

Model Top-1 Training data
recall

Jansen (2020)
(Fine-tuned GPT2)

5.07 77 (fine-tune)
41.92 779 (fine-tune)
53.80 1948 (fine-tune)
61.00 7793 (fine-tune)

Ours (GPT-J) 54.34 10 (in-context)

Table 3: Comparison against subgoal prediction performance
of Jansen (2020).

correspond to valid subgoal sequences. We eval-423

uate models on the valid-seen split of the dataset424

which has 800 instances.425

Table 1 shows subgoal inference results cate-426

gorized by task type. We use publicly available427

pre-trained transformer language models GPT2-XL428

(Radford et al., 2019) and GPT-J (Wang and Komat-429

suzaki, 2021) via the HuggingFace library (Wolf430

et al., 2020), which respectively have 1.5B and 6B431

parameters, in our experiments. The first six of the432

seven task types have two object arguments each.433

The pick place movable task type has three object434

arguments and hence a lower recall than the other435

task types. The top-10 recall of GPT2-XL and GPT-436

J are respectively 64% and 73%, which shows that437

large language models have strong ability to reason438

about plans from few training examples.439

Re-ranking hypotheses The top-k recall perfor-440

mance reported in Table 1 are based on log p(h|τ).441

We confirmed that the biases reported in the liter-442

ature such as predicting content from the prompt443

are present in model predictions (Zhao et al., 2021).444

Consider the query example Place a chilled mar-445

tini glass with a fork on it on the table. When the446

prompt contains training examples that mention447

‘sink’, the model assigns the following log p(h|τ)448

to these hypotheses.449

• pick up fork, put in cup, put in sink. -2.4450

• pick up fork, put in cup, put in table. -4.3451

When all training instances in the prompt involv-452

ing sink are removed, the log probabilities now453

become,454

• pick up fork, put in cup, put in sink. -13.7455

• pick up fork, put in cup, put in table. -9.1456

Obj category Confusion categories

wateringcan pencil, kettle
glassbottle vase
cart shelf, sidetable, microwave, cart, fridge
butterknife knife, butterknife
floorlamp desklamp, floorlamp
vase pencil, vase, bowl, winebottle, pot
ladle spoon, ladle
pot pot, pan
soapbottle soapbottle, winebottle

Table 4: Object categories the model makes most errors on
and the top object categories it confuses with.

The incorrect hypotheses involving sink is now 457

ranked below the correct hypothesis involving ta- 458

ble. While language models can retrieve strong 459

hypotheses as indicated by the high top-10 recall, 460

this observation shows that the ranking of these 461

hypotheses, as determined by p(h|τ), may not be 462

accurate. We thus consider mutual information 463

based ranking approaches. Table 2 shows top-1 re- 464

call when model generated hypotheses are ranked 465

according to different criteria. We first observe 466

that p(τ |h) ranks hypotheses more accurately than 467

p(h|τ). Second, combining the two log probabil- 468

ities with λ = 1
2 yields better scores. This shows 469

that generating a large number of hypotheses with 470

a language model, followed by more accurate re- 471

ranking using Mutual Information inspired metrics 472

can be an effective paradigm for few-shot genera- 473

tion tasks with in-context learning. 474

Comparison with prior work We compare our 475

prediction performance against prior work in Ta- 476

ble 3. Jansen (2020) fine-tunes a GPT2-Medium 477

model (325M parameters) to predict subgoals from 478

instructions and report prediction results3 when the 479

model is trained on varying amounts of training 480

data: 1%, 10%, 25%, 100% of the training set, 481

which has 7793 instances. We ignore the naviga- 482

tion subgoals in this evaluation and only compare 483

the sequence of object interactions to perform a fair 484

comparison. We also report prediction performance 485

of GPT-J using our approach on the same test set. 486

The results show that large language models en- 487

code useful knowledge that can help plan from 488

instructions effectively when supervision is lim- 489

ited. However, fine-tuning can be effective when 490

more supervision is available due to the fixed con- 491

text length limitation of in-context learning. See 492

Section 5 for ablations and more discussion about 493

fine-tuning. 494

3https://github.com/cognitiveailab/alfred-gpt2
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Prediction errors We examine prediction errors495

in identifying task type and object type. Key496

sources of model errors include annotation issues497

and ambiguity in object types. Table 4 shows the498

object types that have the least prediction accu-499

racy, along with the object categories the model is500

confused about. Annotations can fail to correctly501

identify the target object - identifying a butter knife502

as a knife or a pepper shaker as salt shaker. Am-503

biguity can also arise from identifying an object504

with different names, depending on the context.505

For instance, depending on the scene layout, the506

argument for a look at object in light task can be507

a floor lamp or a desk lamp. Unless the type of508

lamp is identified precisely in the instruction, it is509

not possible to correctly predict the type of lamp,510

so this task type has very low top-1 recall in Ta-511

ble 1. Correctly identifying these objects requires512

feedback from interaction with the environment.513

The experiments so far evaluate the ability of a514

language model to retrieve ground truth subgoal515

sequences. Next we examine embodied agents that516

make use of these predictions and collect more su-517

pervision in order to improve subgoal predictions.518

4.3 Agent policy and incorporating519

environment feedback520

We now use subgoal predictions to construct an521

agent policy that acts in a simulated environment522

to complete tasks. The agent state representation523

and pre-trained low-level subgoal policy are bor-524

rowed from the HLSM model proposed in Blukis525

et al. (2021). HLSM models the agent state us-526

ing a spatial persistent voxel representation of the527

room where each voxel represents the category of528

the object present in that position. The represen-529

tation is constructed using modules that estimate530

segmentation and depth maps and other visual rea-531

soning components and is updated as the agent532

gathers new observations. We use pre-trained mod-533

els made available by the authors4 to estimate agent534

state and their pre-trained low-level policy in our535

experiments.536

We combine subgoal predictions with the pre-537

trained HLSM low-level policy and evaluate the538

overall agent policy on the ALFRED task in Ta-539

ble 5. Unlike the results reported in Section 4.2540

which were based on the static dataset, these re-541

sults are based on subgoals executed against the542

AI2-Thor simulator. In addition to task success543

4https://hlsm-alfred.github.io

Model
Success rate

Task Goal-Cond

Seq2seq (Shridhar et al., 2020a) 3.7 10.0
MOCA (Singh et al., 2020) 19.2 28.5
FiLM (Min et al., 2021b) 24.6 37.2
HLSM (Blukis et al., 2021) 29.6 38.8

HLSM
low-level

policy

Predicted subgoals 19.8 31.4
Re-ranked subgoals 23.9 35.0
Oracle subgoals 37.2 48.2

Table 5: Task completion and goal condition success rates
of models on the ALFRED validation seen split (results are
based on task executions in the AI2-Thor simulator). The
performance of our subgoal predictions combined with the
HLSM low-level policy are shown at the bottom. We show
the performance before and after re-ranking language model
predictions based on agent state. Oracle subgoals shows the
performance upper bound.

rate, we also report the percentage of goal condi- 544

tions satisfied, which rewards the model for partial 545

task completions. 546

We compare against the following baselines 547

on the ALFRED task. Seq2seq (Shridhar et al., 548

2020a) is a simple sequence-to-sequence baseline 549

trained to map text instructions to low-level ac- 550

tions. MOCA (Singh et al., 2020) improves on 551

Seq2seq using subgoal supervision and pre-trained 552

visual reasoning components. Recent work such 553

as HLSM (Blukis et al., 2021) and FiLM (Min 554

et al., 2021b) build and use spatial semantic state 555

representations and achieve stronger performance 556

on the task. Note that, unlike these prior methods 557

(MOCA, HLSM, FiLM) that rely on full subgoal 558

supervision (20k instances), our approach is based 559

on a small amount of subgoal supervision and addi- 560

tional supervision collected using active interaction 561

with the environment. In addition, our approach 562

does not require task-level expert trajectories and 563

only assumes that a subgoal execution policy is 564

provided. 565

Using the top language model prediction as is 566

without using any information from the environ- 567

ment leads to 20% success rate. Next, we collect 568

plan execution feedback for 1000 text instructions 569

to train the ranking model described in Section 3.2. 570

Re-ranking language model predictions using the 571

trained ranking model improves the performance 572

to 24%, which shows the importance of incorpo- 573

rating feedback from environment interaction. In 574

comparison, the HLSM model with full subgoal su- 575

pervision has success rate 30%. Although our pre- 576

dictions fall short of HLSM, they are competitive 577

with the other baselines with subgoal supervision. 578

The performance upper bound estimated using or- 579
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acle subgoals is 37%, which shows the room for580

improvement over our predictions. These results581

show that accurate subgoal inference coupled with582

pre-trained low-level components leads to agents583

that perform well in embodied environments.584

Figure 1 shows an example where the ranking585

model uses environment information to identify586

better plans. In this example, the instruction am-587

biguously specifies the receptacle as ‘white table588

with shelving’. The language model’s top two pre-589

dictions for the target receptacle are sidetable and590

shelf, neither of which are present in the environ-591

ment. The agent state captures this information and592

helps identify diningtable as the correct receptacle.593

5 Ablations594

We perform a series of ablations to identify the595

robustness of model predictions. We compare the596

performance of in-context learning to a sequence-597

to-sequence model fine-tuned to translate instruc-598

tions to subgoal sequences. In addition, we observe599

the effect of varying the number of training exam-600

ples and choice of training examples.601

Number of training examples Figure 3 shows602

model recall for varying number of training ex-603

amples. For zero training examples, the prompt604

consists of just the query instruction and the model605

decodes subgoals. 40 is the maximum number of606

examples for which the model prompt fits the se-607

quence length restriction (1024 tokens) of GPT608

models. A steady increase in performance can be609

initially observed when increasing the number of610

training examples and the performance saturates611

towards the end. In-context learning further has612

the limitation of not being able to accommodate613

a larger number of training examples due to the614

length restriction. It would be interesting to ex-615

plore how to make more effective use of larger616

number of training examples in future work.617

Choice of training examples We also estimate618

performance variance by varying the random seed619

for choosing examples randomly from the training620

set and compute standard deviation based on five621

random seeds for each setting. The plot shows that622

top-1 predictions from in-context learning have623

lower variance compared to fine-tuning.624

Comparison with fine-tuning In order to under-625

stand how well the in-context learning approach626

compares to fine-tuned models, we fine-tune a T5-627

large model (Raffel et al., 2019) with 770M param-628

eters on varying amounts of training data (this was629

10 20 30 40
0

20

40

60

80

Number of training examples

R
ec

al
l

GPT-J in-context (top-1)
T5-large finetune (top-1)
GPT-J in-context (top-10)
T5-large finetune (top-10)

Figure 3: Comparison between GPT-J with in-context learning
and a fine-tuned T5-large model for varying number of training
examples. See text for details.

the largest model we could fine-tune on our com- 630

pute infrastructure). Note that this is not a head-to- 631

head comparison between in-context learning and 632

fine-tuning due to the difference in model size. Fur- 633

thermore, there are other fine-tuning mechanisms 634

such as prompt tuning and head tuning (Min et al., 635

2021a) which are not considered here. However, 636

the result suggests that in-context learning with 637

large pre-trained models can be favorable when 638

computational constraints do not allow full fine- 639

tuning of large models. 640

These ablations show that the in-context learn- 641

ing ability of large language models leads to pre- 642

dictions that are accurate, robust and stable in the 643

presence of a small amount of training data. 644

6 Conclusion 645

This work explores the use of pre-trained lan- 646

guage models for planning in real-world tasks. We 647

showed that language models have strong capabil- 648

ity to reason about subgoal sequences given a small 649

number of training examples. We further demon- 650

strated some simple mechanisms to incorporate 651

feedback from interaction with the environment 652

and show that this leads to more usable predictions. 653

Finally, we show that combining subgoal predic- 654

tions with a pre-trained low-level policy yields a 655

strong baseline for embodied agent learning. Our 656

ablations demonstrate that in-context learning with 657

a small amount of subgoal demonstrations has ro- 658

bust generaliztion properties. It also has the limita- 659

tion of not being able to incorporate a large num- 660

ber of training examples due to the fixed context 661

length restriction. It would further be beneficial to 662

perform end-to-end learning with language model 663

based subgoal prediction and low-level policy, and 664

these can be interesting avenues to explore in future 665

work. 666
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A Mutual Information based scoring847

Mutual Information between random variables848

X,Y is defined as in Equation (2). We consider a849

weighted Mutual Information metric as defined as850

in Equation (3) similar to Li and Jurafsky (2016)851

and introduce the hyperparameter λ. Identifying Y852

that maximizes the weighted Mutual Information853

is equivalent to maximizing the expression in Equa-854

tion (4). We use this metric to rank hypotheses855

generated by the language model.856

MI(X,Y ) = log
p(x, y)

p(x)p(y)
(2)857

wMI(X,Y ) = log
p(x, y)

p(x)p(y)λ
(3)858

argmax
y

wMI(X,Y )859

= argmax
y

log
p(x, y)

p(x)p(y)λ
860

= argmax
y

log
(
p(x, y)

p(x)

)1−λ(p(x, y)

p(y)

)λ 1

p(x)λ
861

= argmax
y

(1− λ)log p(y|x) + λlog p(x|y)862

− λlog p(x)863

= argmax
y

(1− λ)log p(y|x) + λlog p(x|y)

(4)

864

B Subgoal representation865

Table 6 shows the subgoal representation we use in866

this work.

Subgoal Representation

(Pickup, X) pick up X
(Put, X) put in X
(Heat, X) heat in X
(Cool, X) cool in X
(Clean, X) clean in X
(Slice, X) slice X
(ToggleOn, X) turn on X

Table 6: Subgoals and corresponding text represen-
tation. X represents an object argument.

867

C Ranking model: Architecture 868

State embedding HLSM represents the agent 869

state as a semantic voxel representation s ∈ 870

[0, 1]X×Y×Z×C where the value s(x, y, z, c) rep- 871

resents if there is an object of type c at position 872

(x, y, z) of the room layout. The agent state is en- 873

coded into a vector f state(s) using a linear mapping. 874

We use this encoding as the state embedding. 875

Instruction and subgoal sequence encoding 876

The instruction τ and a candidate subgoal sequence 877

g are jointly processed using a BERT encoder and 878

the CLS representation is used as a representation 879

vector BERTCLS(τ, g). 880

The ranking model is rep- 881

resented as f(g, τ, s; θ) = 882

θT concat(f state(s),BERTCLS(τ, g)) where θ 883

is a parameter vector. When training the ranking 884

model the state embedding and BERT encoders 885

are held fixed and only the linear transformation θ 886

is trained. 887

D Ranking Model: Training and 888

Inference 889

Formally, the learning problem is a MDP 890

(S,G,L,R, T ), where st ∈ S is the agent state, 891

g(t) ∈ G is a subgoal, τ ∈ L is a text instruc- 892

tion, R(τ, st) is a reward function that provides 893

success/failure feedback for completing a given 894

instruction, T : (st, g
(t)) → st+1 is a state tran- 895

sition function where st+1 is computed by a low- 896

level policy πL pre-trained to execute a given sub- 897

goal g. Our goal is to train a high-level policy 898

πH(g(t)|τ, st, g(<t)) where st is the agent state and 899

g(<t) is the sequence of subgoals completed so far 900

at high-level time-step t. 901

Algorithm 1 describes how we collect training 902

data to train the ranking model. Algorithm 2 shows 903

how the ranking model is used during inference. 904
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Algorithm 1 Training

Given: epochs = 100, Dins (set of instructions)

Collect training data
D ← {} (Initialize training set)
for τ in Dins do

Generate subgoals and re-rank using mutual information metric g1, . . . , gk ∼ pLM(·|τ)
for i = 1 . . . k do

Initialize agent state s
S ← {s} (Record agent states)
for j = 1 . . . |gi| do

s← T (s, g(j)i ) (Execute g
(j)
i using πL)

S ← S ∪ {s}
end for
ifR(τ, s) > 0 then (Task succeeded)
D ← D ∪ {(gi, τ, s)|s ∈ S}
break

end if
end for

end for
Train model
for i = 1 . . . epochs do

loss← 0
for (g, τ, s) ∈ D do

Generate subgoals g1, .., gk ∼ pLM(·|τ)
loss← loss − log exp f(g,τ,s;θ)∑k

i=1 exp f(gi,τ,s;θ)

end for
θ ← Optimizer Update(θ,∇θf)

end for
return f

Algorithm 2 Inference

Given: instruction τ , ithresh = 10
Generate subgoals g1, . . . , gk ∼ pLM(·|τ)
G← {g1, . . . , gk}
Initialize agent state s
i← 0 (subgoal index)
g ← argmaxg∈G f(g, τ, s; θ)

while g(i) ̸= <stop> and i < ithresh do
s← T (s, g(i)) (Execute g(i) using πL)
G← {h|h ∈ G and h(i) = g(i)}
g ← argmaxg∈G f(g, τ, s; θ)
i← i+ 1

end while
return g, s
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E Analysis of model errors 905

Figure 4 shows the confusion matrix for object type prediction. Predictions are from top-1 subgoal 906

sequences predicted by GPT-J. 907

Figure 4: Object type confusion matrix.
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